Introduction to Unscented Kalman Filtering
This engineering note is the first of two parts:
Part 1 Design and Simulation.
Part 2 Real-World System Realization. (Being written)
It aims at demonstrating how you may use Matlab/Simulink together with Rapid STM32 blockset and ARM Cortex-M3 processors (STM32) to develop digital signal processing systems; using a tilt sensor as a case study.
It covers the development process from design, simulation, hardware-in-the-loop testing, and creating a stand-alone embedded system. The content is supposed to be as simple/introductory as possible.
In this first part:
1. The motivation for using Simulink for embedded system development is explained.
2. A simplified model of tilt sensor system is developed.
3. Kalman filtering and Unscented Kalman filtering (UKF) theory is summarized.
4. Graphical instructions are then provided to guide you through the whole process of implementing a Simulink model to design, simulate, and evaluate the performance of an UKF for a tilt sensor system.
Note: Source code is also provided to perform Monte Carlo simulation based on Simulink model to evaluate UKF performance using covariance analysis.
In the second part, graphical instructions will be provided to guide you through the process of transferring your design from Simulink model to real-world stand-alone tilt sensor system based on Rapid STM32 - R1 Stamp board.
Visit www.rapidstm32.com for more information.
Zitieren als
Krisada Sangpetchsong (2025). Introduction to Unscented Kalman Filtering (https://www.mathworks.com/matlabcentral/fileexchange/24917-introduction-to-unscented-kalman-filtering), MATLAB Central File Exchange. Abgerufen.
Kompatibilität der MATLAB-Version
Plattform-Kompatibilität
Windows macOS LinuxKategorien
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Live Editor erkunden
Erstellen Sie Skripte mit Code, Ausgabe und formatiertem Text in einem einzigen ausführbaren Dokument.
Version | Veröffentlicht | Versionshinweise | |
---|---|---|---|
1.2.0.0 | Add seed1 and seed 2 declarations to PreLoadFcn callback so the model can run stand-alone. |
||
1.1.0.0 | Change the Title and add a link to another introductory note on Kalman filtering at http://www.rapidstm32.com/application-notes/kalman_intro.pdf?attredirects=0 |
||
1.0.0.0 |